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R. J. Telford2,3, and S. Veski10

1Department of Geology, P.O. Box 64, 00014, University of Helsinki, Finland
2Department of Biology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
3Bjerknes Centre for Climate Research, Allégaten 55, 5007, Bergen, Norway
4Environmental Change Research Centre, University College London, 26 Bedford Way,
London, WC1H OAP, UK
5Department of Geography, University of Liverpool, Roxby Building, Liverpool, L69 7ZT, UK
6GeoBiosphere Science Centre, Quaternary Sciences, Lund University, Sölvegatan 12, 223
62 Lund, Sweden
7Geological Survey of Finland, P.O. Box 96, 02151, Espoo, Finland
8Department of Earth Sciences, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
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Abstract

A synthesis of well-dated high-resolution pollen records suggests a spatial structure
in the 8200 cal yr BP event in northern Europe. The temperate, thermophilous tree
taxa, especially Corylus, Ulmus, and Alnus, decline abruptly between 8300 and 8000
cal yr BP at most sites located south of 61◦ N, whereas there is no clear change in5

pollen values at the sites located in the North-European tree-line region. Pollen-based
quantitative temperature reconstructions and several other, independent palaeoclimate
proxies, such as lacustrine oxygen-isotope records, reflect the same pattern, with no
detectable cooling in the sub-arctic region. The observed pattern would challenge the
general view of the wide-spread occurrence of the 8200 cal yr BP event in the North10

Atlantic region. An alternative explanation is that the cooling during the 8200 cal yr
BP event took place mostly during the winter and spring, and the ecosystems in the
south responded sensitively to the cooling during the onset of the growing season.
In contrast, in the sub-arctic area, where the vegetation was still dormant and lakes
ice-covered, the cold event is not reflected in pollen-based or lake-sediment-based15

records. The arctic regions may therefore not always be optimal for detecting past
climate changes.

1 Introduction

Abrupt climate changes are typically non-linear, taking place when the climate system
is forced over a critical threshold, followed by a rapid transition to a new state (Al-20

ley et al., 2003). High-resolution records have revealed that abrupt climate changes
were frequent during the last glacial when regional temperature changes of as much
as 8◦C to 16◦C may have occurred in a decade or less (Severinghaus and Brook,
1998; Stocker, 2000; Alley et al., 2003; Schulz et al., 2004), but also during the early
post-glacial period characterized by rapidly vanishing ice sheets (Clark et al., 2001,25

2002). The precise origins and processes associated with these events remain contro-
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versial (Schulz et al., 2004), as do their spatial expressions (Alley et al., 2003; Wunsch,
2006), although most theories invoke the role of the Atlantic meridional overturning cir-
culation (AMOC) and its sensitivity to freshening of the North Atlantic surface water
by increased precipitation, runoff from surrounding landmasses, and abrupt fluxes of
glacial melt-water (Clark et al., 2002).5

Many records, especially from the North Atlantic region, provide evidence of a cold
event at 8200 cal yr BP that represents a unique climatic feature within the last 10 000
years in terms of magnitude and abruptness (e.g. Alley et al., 1997; von Grafenstein
et al., 1998; Klitgaard-Kristensen et al., 1998; Johnsen et al. 2001; Spurk et al., 2002;
Veski et al, 2004; Alley and Àgústsdóttir, 2005). Although it has been suggested that10

the cooling was linked to reduced solar output (Rohling and Pälike, 2005), there is accu-
mulating evidence that the primary cause of the cooling was a pulse a cold freshwater
released by a sudden drainage of the proglacial Laurentide lakes in North America to
the North Atlantic at about 8500 cal yr BP, leading to a transient freshening and cool-
ing of the North Atlantic Surface Water (NADW). This probably resulted in a weaker15

AMOC, and a consequent reduction of the northward heat transport and associated
heat release in the North Atlantic region. Compelling support for this hypothesis is pro-
vided by the record of Ellison et al. (2006), showing that the near-bottom flow speed of
the Iceland-Scotland Overflow Water, an important component of the AMOC, declined
significantly at the onset of the cold event. This is the first firm palaeoceanographic20

evidence for a reduction of the NADW formation. This theory is supported by climate
models which, in accordance with palaeoclimatic records, simulate maximum cooling
in the North Atlantic region in response to the drainage of the Laurentide lakes (Alley
and Àgústsdóttir, 2005; Wiersma and Renssen, 2006; Wiersma et al., 2006).

One of the key regions for investigating the continental-scale impacts of the 8200 cal25

yr BP cold event is Northern Europe, located downwind of the North Atlantic Ocean.
The climatic conditions there are strongly dependent on the intensity of the North At-
lantic Oscillation (NAO) and the associated westerly airflow, which is related to the
strength of the AMOC and to the sea-surface temperatures in the North Atlantic (Hur-
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rell 1995; Rodwell et al., 1999; Hurrell et al., 2003; Wu and Rodwell, 2004; Stouffer
et al., 2006). Thus, palaeoclimatic records from northern Europe can provide basis
for testing potential processes associated with the 8200 cal yr BP cold event. Since
the first reported occurrences of the cold event based, for example, on high-resolution
pollen records (Snowball et al., 2001; Veski et al., 2004) and stable isotope records ob-5

tained from calcareous lake sediments (Hammarlund et al., 2003; Veski et al., 2004),
the number of well-dated quantitative temperature reconstructions from this region has
increased rapidly. This improving network of records with high time resolution now per-
mits a more detailed spatial and temporal analysis of the climatic changes between
9500 to 7000 cal yr BP.10

Here we examine high-resolution pollen-stratigraphical records produced with uni-
form methodology in northern Europe along a sector that ranges from 55 to 70◦ N
latitude and from 18 to 26◦ E longitude and includes two significant climatic gradients:
a primary south-to-north gradient of falling temperature and a secondary west-to-east
gradient of decreasing precipitation and oceanicity. We particularly aim to investigate15

the spatial patterns of vegetational and climatic change in order to observe if the evi-
dence for the cold event shows consistent features or whether there are geographical
differences in the amplitude or occurrence of the event along the two climatic gradi-
ents. In addition, we compare the high-resolution pollen records with other, indepen-
dent palaeoclimatic records of comparable time resolution, in particular oxygen-isotope20

records obtained on lacustrine carbonates.

2 Material and methods

There are numerous pollen diagrams available from northern Europe, but only a frac-
tion of them have sufficient temporal resolution and chronological control to allow as-
sessment of climate events of 200–300 years duration. Pollen records from 12 sites25

with adequate resolution and reliable chronologies were selected for this study (Fig. 1,
Table 1). The number of analysed pollen samples for the last 10 000 years ranges from

168

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/165/2007/cpd-3-165-2007-print.pdf
http://www.clim-past-discuss.net/3/165/2007/cpd-3-165-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
3, 165–195, 2007

8200 events in
Northern Europe

H. Seppä et al.
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57 (Lake Trehörningen) to over two hundred (Lake Nautajärvi 260 and Lake Rouge
237), and the records selected have a minimum of six radiocarbon dates and in gen-
eral smooth age-depth models. Two records (Lakes Nautajärvi and Rouge), have ex-
ceptionally precise chronologies based on annually laminated sediments (Ojala et al.,
2003; Veski et al., 2004). At all sites the pollen percentage values have been calculated5

on the basis of the total sum of all terrestrial pollen and spore types.
In addition to the examination of individual pollen curves, pollen-stratigraphical data

were used to derive a quantitative temperature record for each site for the early- to
mid-Holocene. Two different temperature parameters were used in the quantitative re-
constructions. July mean temperature (Tjul) was reconstructed at four sites located in10

the northern tree-line region, whereas annual mean temperature (Tann) was estimated
for the rest of the sites located in the central or southern parts of the study area. The
reason for this is that in the far north the growing season is confined to three or four
summer months (MJJA) and a vegetation-based proxy such as pollen arguably pre-
dominantly represents summer temperature conditions. No such generalization can15

be made in more southern parts of Fennoscandia, however, because there the grow-
ing season is considerably longer, starting often in March or April and continuing to
October (Rötzer and Chmielewski, 2001; Linderholm et al., 2006). In addition, winter
climatic conditions are important for the distribution and regeneration of many plant
species, especially those restricted to the most oceanic parts along the west coast20

of Fennoscandia (Dahl, 1998). Thus the pollen records represent a mixture of taxa
with different temperature requirements in relation to the seasons and annual mean
temperature is probably a better justified climatic parameter to be reconstructed from
pollen data in southern and central Fennoscandia than July or summer (JJA) mean
temperature (Seppä et al., 2004).25

Pollen-based temperature reconstructions were based on transfer functions derived
from North-European pollen-climate calibration sets. These data sets are based on
modern climate data from the Climate Normals period 1961–1990 and on modern
pollen samples, collected from top surface sediment samples of small to medium-sized
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lakes. All samples were selected, collected, and analysed with standardised methods
(see Seppä et al., 2004). The Tjul records were based on 164 surface samples from
Norway, 27 samples from northern Sweden, and 113 samples from Finland (Seppä
and Birks, 2001). The Tann reconstructions were carried out using three different cal-
ibration subsets. Subset 1 consists of 113 samples from Finland, subset 2 includes5

24 samples from Estonia in addition to the 113 Finnish samples (Seppä et al., 2004),
and subset 3 includes 37 samples from Sweden in addition to the 113 Finnish sam-
ples and the 24 Estonian samples. Table 1 indicates which subset was used for each
fossil record. The transfer functions were developed using weighted averaging partial
least squares (WA-PLS) regression, a non-linear, unimodal regression and calibration10

technique commonly used in quantitative environmental reconstructions (ter Braak and
Juggins, 1993; Birks, 1995, 2003). WA-PLS was implemented by the program CALI-
BRATE (S Juggins and CJF ter Braak unpublished program). All terrestrial pollen and
spore types were included in the models, and were square-root transformed to stabilize
their variances and to maximize “the signal to noise” ratio (Prentice, 1980). The perfor-15

mance statistics of the pollen-climate calibration sets are given in Table 2. In general
the statistics indicate high performance of the models relative to other corresponding
models based on various biological proxy techniques (Birks and Seppä, 2004).

3 Results

To show the details of the pollen-stratigraphical changes during the 8200 cal yr BP20

event in northern Europe, we focus on key pollen types. In northern Europe pollen
types that mostly decline during the event, indicating either reduced populations and/or
pollen productivity, likely caused by the cooling, are the thermophilous deciduous tree
taxa, predominantly Corylus, Ulmus and Alnus. The types that usually increase are
Betula and/or Pinus (Snowball et al., 2001; Veski et al., 2004; Seppä et al., 2005;25

Sarmaja-Korjonen and Seppä, 2007). The percentage pollen curves of Corylus and
Ulmus are shown in Fig. 2. As these temperate deciduous tree taxa do not occur in
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the pollen records from the tree-line region, curves are shown only for the sites that are
located in the southern and central part of the research area. Both taxa show a distinct
and abrupt decline during the event at four sites, all located south of 61◦ N. Corylus
especially seems to respond strongly to the sudden cooling, its values dropping at Lake
Rouge, for example, from 10–15% to below 5% at 8250–8050 cal yr BP, and the decline5

is almost equally distinct at the three other southernmost sites. The decline of Ulmus is
of similar magnitude apart from the weak signal at Lake Flarken. At Lakes Laihalampi
and Nautajärvi, both located north of 61◦ N, Corylus does not decline during the cold
event, but there is a relatively clear decline of Ulmus at Lake Laihalampi (Fig. 2).

Alnus pollen percentage curves are shown from eight sites (Fig. 3). Alnus is se-10

lected because it is the only thermophilous deciduous tree taxon whose pollen values
continuously exceed 1% at all sites, including those at the northern tree-line. Alnus
pollen is produced by two tree species, A. incana and A. glutinosa, of which the former
is found up to 68◦ N. The comparison of Alnus pollen records indicates a south to north
gradient. There is a clear decline of Alnus values at the southern sites, especially at15

Lakes Rouge and Arapisto, whereas records from central Fennoscandia indicate little
or no decline. Alnus pollen records from the Arctic tree-line region show no evidence
of a decline.

The pollen-based quantitative Tann reconstructions for the period 9500–7000 cal yr
BP show broadly the same pattern as the key indicator pollen types (Fig. 4). The results20

indicate a consistent cooling centred around 8200 cal yr BP at the southernmost sites,
especially at Lake Rouge in Estonia, Lake Flarken in Sweden, and Lake Arapisto in
Finland. At all these sites there is a temperature drop of 0.5 to 1.5◦C. The cooling
begins abruptly at about 8300 cal yr BP, lasts 200 to 300 years, and ends with a sudden
temperature rise at about 8000 cal yr BP. As the age-depth models for most sites25

were based on calibrated radiocarbon dates, it is realistic to relate the slight temporal
differences between the records to the inevitable imprecision of the chronologies. In
contrast, the Tann reconstructions from Lakes Holtjärnen, Laihalampi and Nautajärvi,
all located north of 61◦ N, show weak or no evidence of cooling at 8300–8000 cal yr BP.
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Tjul records from the Fennoscandian tree-line region do not provide any evidence for a
temperature change during the event. All four sites indicate a steady rise of Tjul from
9400 cal yr BP toward the mid-Holocene, with variability that is not consistent between
the records. Hence, the quantitative reconstructions follow the same spatial pattern as
the key pollen types, namely that there is a distinct cooling between 8300 and 80005

cal yr BP in southern Fennoscandia and in the Baltic countries, weak or no cooling in
central Fennoscandia, and no evidence of cooling in the tree-line region of northern
Europe (Figs. 5 and 6).

A synthesis of the pollen-based evidence shows strikingly that the four records where
the cooling is clearest are from the southernmost sites, located south of 61◦ N. Bio-10

geographically, they are located in the temperate-boreal (boreo-nemoral) zone today
(Fig. 1) where the vegetation is characterized by the occurrence of nemoral ther-
mophilous tree species such as Tilia cordata, Quercus robur, Corylus avellana, Ulmus
glabra, Acer platanoides, and Fraxinus excelsior. All these tree species reach their
northern distribution limits close to the border of the nemoral and boreal vegetation15

zones. In contrast, all the records where there is no cooling at 8200 cal yr BP are from
sites that are located north of 61◦ N. Lakes Laihalampi and Nautajärvi are located in the
southern boreal zone, where the dominant forest type is a mixture of conifers and birch,
and Lakes Tsuolbmajavri, KP-2, Dalmutladdo, and Toskaljavri are all situated within the
northern ecotone of the boreal zone, with significant arctic-alpine components in the20

surrounding vegetation.

4 Discussion

The relatively mild winter climate of northern Europe is a result of the influence of
the Atlantic Ocean and the westerly airflow over the continent (Seager et al., 2002;
Sutton et al., 2003). This influence is particularly strong during the positive phase25

of the NAO with strong westerly wind, greater advection of moist air off the Atlantic
and onto the continent, and high temperature and precipitation even in northernmost
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Fennoscandia (Hurrell et al., 2003; Kryjov, 2004; Cook et al., 2005; Jaagus, 2006).
The reverse holds true when the NAO has a negative mode and the westerly airflow
is replaced by anticyclonic conditions and a predominantly continental airflow. The
most probable scenario for cooling during the 8200 cal yr BP cold event in northern
Europe is that the sudden flux of cold freshwater perturbed the AMOC and led to5

lower sea-surface temperatures in the North Atlantic. As a consequence the heat
transport from the Atlantic onto the continent decreased. The reason for this may have
been a weaker generation of migratory cyclones and, in general, a weaker flow of mild
oceanic air over northern Europe during winter, corresponding roughly with the modern
low index NAO mode during the winter (Veski et al., 2004; Hammarlund et al., 2005;10

Seppä et al., 2005). A related hypothesis suggests that the weaker oceanic airflow
may have resulted from a major expansion of sea-ice cover in the North Atlantic and
an associated reduction of the advection of heat from the ocean to the atmosphere
(Wiersma and Renssen, 2006).

Against this background, it can be argued that the reconstructed longitudinal gra-15

dient towards a weaker signal in the North reflects realistically a geographical pat-
tern of the magnitude of the 8200 cal yr BP event. The cold event may have been
caused by weakened westerly circulation during winter, so that the resulting decrease
in oceanicity was particularly influential south of ∼60◦ N latitude and less significant
in the far north of Fennoscandia. This explanation may seem paradoxical, given the20

presently strong influence of the North Atlantic and the NAO on the climate of north-
ern Fennoscandia, particularly on the eastern side of the Scandes Mountains (Hurrell
et al., 2003). It is also inconsistent with the results of modelling studies focusing on
the 8200 cal yr BP event (Renssen et al., 2001, 2002; Alley and Àgústsdóttir, 2005;
Wiersma and Renssen, 2006), all indicating major, wide-spread cooling in the North25

Atlantic and the eastern Atlantic seaboard in response to weakening of the AMOC.
Interestingly, however, the multimodel ensemble simulation based on models ranging
from the earth system models of intermediate complexity to fully coupled atmosphere-
ocean general circulation models indicates that a moderately small freshwater flux of
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0.1 Sv (1 Sv=106 m3 s−1) may lead to a strong cooling in the North Atlantic south of
Greenland but a 1–2◦C warming over the Barents Sea and the Nordic Sea east of
Svalbard and no significant temperature change on the northern Fennoscandian main-
land (Stouffer et al., 2006). Similarly, a model simulation by Vellinga and Wood (2002)
suggests a strong cooling especially in winter in the North Atlantic but no significant5

temperature change in northern Fennoscandia or in the Barents Sea region.
An alternative hypothesis can also explain the observed geographical pattern in the

records. Model simulations consistently indicate that the 8200 cal yr BP event was pre-
dominantly a winter (DJF) and spring (MAM) event, as is also supported by the majority
of palaeoclimate records from various parts of Europe (Alley and Àgústsdóttir, 2005;10

Wiersma and Renssen, 2006). The tree taxa that show strong responses to the 8200
cal yr BP event, Alnus, Corylus, and Ulmus, start flowering in early spring, in central
Europe often in February–March and in southern and central Fennoscandia in March–
April (Jäger et al., 1996; Kasprzyk et al., 2004). The start of their flowering and plant
development is in general dependent on air temperature (Wielgolaski, 1999; Aasa et15

al., 2004) and if an abrupt change to cold winters and cold early springs with frequent
frosts took place at the beginning of the event, it may have led to major damage to flow-
ers and male catkins, resulting in reduced pollen productivity, sexual regeneration, and
population sizes. This hypothesis is supported by investigations of the relationships
between modern phenological phenomema and climate patterns (Kramer et al., 2000)20

and by modern pollen monitoring studies in Europe. For example, cold weather con-
ditions during winter and spring result in a reduction of the annual pollen productivity
and a delay of the start of the pollen season of tree species that are favoured by high
temperatures, such as Alnus, Corylus and Ulmus (Andersen, 1972; Frenguelli, 1993;
Jäger et al., 1996; Frei, 1998; Spieksma et al., 2003; Kasprzyk et al., 2004). The clear25

decline of the pollen percentages of these taxa may therefore reflect their phenologi-
cal inability to adapt to an abrupt lowering of the winter and early spring temperatures
during the 8200 cal yr BP event.

In contrast, northernmost Fennoscandia, north of 68◦ N, is characterized by a
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markedly different climatic and phenological situation. Here winter conditions with sub-
zero diurnal mean temperatures and abundant snow remain long into April. The grow-
ing season starts in late May or early June (Linderholm et al., 2006) and its duration is
typically only 100–150 days. Winter temperatures can be extremely low, down to below
–40◦C, and only the most frost-resistant tree species thrive, i.e. the main northern forest5

components Pinus sylvestris, Picea abies, and Betula (B. pubescens and B. pendula)
(Grace et al., 2002). For example, climate chamber experiments have shown that Pi-
nus sylvestris can tolerate temperatures as low as <–72◦C during the winter while its
needles can be lethally damaged when exposed to –10◦C during the summer (Repo,
1992; Beck et al., 2004). The continental conifer species Picea abies is also adapted10

to cold winters as its radial growth is positively correlated with low winter temperatures
and negatively correlated with high winter temperatures (Mäkinen et al., 2000). Of the
deciduous tree taxa that show strong responses to the 8200 cal yr BP event in the
southern part of the study region, only Alnus grows in northern Fennoscandia, albeit
not north of about 68◦ N. However, Alnus incana is less sensitive to cold periods during15

the late winter and early spring in the far north, because of phenological adaptation
of the beginning of flowering, bud break, and leaf expansion, these processes taking
place usually in May to June, about two months later than in the south.

If the cooling took place mostly during winter and early spring, the occurrence, re-
generation, and pollen productivity of the northern-boreal tree taxa may not have been20

significantly affected, and the lack of pollen-stratigraphical responses to the cold event
may reflect largely unaltered climatic conditions during the short growing season of
these taxa. Many other proxy records that are independent of vegetation patterns in-
dicate a weaker signal for the 8200 cal yr BP event towards northern Fennoscandia.
In western Scandinavia records based on loss-on-ignition analysis of lake sediments25

reveal a substantial climatic perturbation and clearly decreased aquatic productivity at
about 8200 cal yr BP (Nesje et al., 2001; Bergman et al., 2005). However, in northern
Fennoscandia the same methods do not display equally clear evidence for a cool-
ing. For example, a high-resolution reconstruction of Holocene equilibrium-line altitude
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changes from the Lyngen peninsula on the northwestern coast of Norway does not
show any sign of glacier growth between 8500 and 7500 cal yr BP (Bakke et al., 2005),
neither does the record of bacterial magnetite from the Lyngen peninsula indicate any
cold excursion during the 8200 cal yr BP event (Paasche et al., 2004). Chironomid-
based temperature reconstructions from northern Finland and Sweden do not indicate5

any cooling between 8300 and 8000 cal yr BP (Rosén et al., 2001; Bigler et al., 2002,
2003; Korhola et al., 2002; Seppä et al., 2002; Larocque and Hall, 2003, 2005). Simi-
larly, quantitative and qualitative reconstructions from the Kola Peninsula in northwest-
ern Russia do not document any cooling at 8200 cal yr BP (Jones et al., 2004). Korhola
et al. (1999) and Bigler et al. (2006) report a cooler period at about 8300 to 8000 cal10

yr BP in diatom-based Tjul reconstructions from the northwestern Fennoscandian tree-
line region, but it is unclear whether these results represent summer cooling or are
more related to changes in the length of the lake ice-cover season, which may be the
most important climate-related feature reflected in diatom records from alpine regions
(Lotter and Bigler, 2000; Sorvari et al., 2002).15

Independent evidence of a considerable influence of winter cooling on the general cli-
matic character and expression of the 8200 cal yr BP event in parts of northern Europe
is provided by oxygen-isotope records obtained on fine-grained sedimentary calcite
from small lakes in the study area. Although relatively few records are available, and in
spite of complications arising from site-specific hydrological characteristics, some rel-20

evant conclusions can be derived from such a comparison (Fig. 7). The Lake Igelsjön
δ18O record from southern Sweden (Fig. 1) is sensitive to changing hydrology, with pe-
riods of 18O-enrichment reflecting mainly elevated evaporation/inflow ratio of the basin
under warm and dry summer conditions (Hammarlund et al., 2003). The strong isotopic
response to the 8200 cal yr BP event therefore predominantly reflects an increase in25

net precipitation during the summer (Hammarlund et al., 2005), perhaps augmented by
a generally shorter ice-free season. However, as demonstrated by Seppä et al. (2005),
about 40% of the decrease in δ18O during the event can be attributed to a depletion in
18O of annual precipitation and groundwater, which is likely coupled to a large extent
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to colder and longer winters. The effect of such a change in winter conditions is also
manifested as a slight depletion in 18O at 8200 cal yr BP in the Lake Rouge record from
southern Estonia (Veski et al., 2004), which more directly reflects δ18O of precipitation.

Oxygen-isotope data of comparable resolution are not available from northern
Fennoscandia, but the Lake Tibetanus δ18O record from northernmost Sweden, close5

to the Atlantic coast (Hammarlund et al., 2002), does not reflect any climatic change at
this stage. Supportive evidence of the absence of an oxygen-isotope response at 8200
cal yr BP in this part of Fennoscandia is provided by the more highly resolved δ18O
record from the SG93 speleothem near the Arctic Circle in Norway (Lauritzen et al.,
1999). Although interpreted differently by the authors, the SG93 record exhibits a gen-10

eral depletion in 18O with time during the early Holocene, consistent with the long-term
evolution of δ18O of precipitation as inferred from the Lake Tibetanus data (Hammar-
lund et al., 2002). It cannot be excluded that the potential effect of a pronounced winter
cooling, and an associated depletion in δ18O of precipitation, on the two latter records
from northwestern Scandinavia was offset by lowered summer temperatures during15

the event, leading to 18O-enrichment of lacustrine and speleothem calcite. However,
it appears likely from these data that the weakening of the AMOC during the 8200
cal yr BP event and the associated cooling of the North Atlantic Ocean (Vellinga and
Wood, 2002) induced a southward displacement of the Polar Front and the westerlies
in winter (Magny et al., 2003), giving rise to a general anti-cyclonic circulation pattern20

over northern Europe. Such a scenario may be invoked to explain the greater inferred
cooling in the southern part of the study area in response to enhanced continentallity
(Fig. 5), as well as parts of the stronger isotopic response in southern Sweden as com-
pared to Estonia (Fig. 7), where the change was of lesser magnitude due to a relatively
continental baseline climate.25
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5 Conclusions

The assessment of the regional impact of the 8200 cal yr BP event is based on a sur-
vey of records of positive evidence in the increasingly dense network of temperature-
sensitive proxy records. Such a survey is a delicate and difficult process, as the palae-
orecords are typically noisy and it is difficult to distinguish regionally restricted and5

representative anomalies. Furthermore, ignoring records with negative evidence can
cause bias in such an assessment. In northern Europe, a synthesis of negative and
positive evidence from pollen-based temperature reconstructions indicates a spatial
pattern in the 8200 cal yr BP event, with more distinct evidence of the cooling in the
Baltic countries and in southern Fennoscandia than in the central and northernmost10

parts of Fennoscandia and adjacent areas. Given the evidence of the wide-spread
nature of the 8200 cal yr BP event in the North-Atlantic region (Alley and Àgústsdóttir,
2005; Wiersma and Renssen, 2006), a cooling probably took place all over northern
Europe, including the tree-line region, but, as the cooling was predominantly a winter
and spring event, taking place before the start of the growing season or before the15

break-up of lake ice in the north, it is not recorded in the quantitative and qualitative
climate records obtained from the far north of northern Europe. However, on the basis
of evidence presented here we cannot rule out a latitudinal gradient in the magnitude
of the event, with a more pronounced cooling in the south and less or no cooling in
the north. It may be possible to test these two hypotheses in the future by developing20

and applying specific palaeoecological techniques such as analyses of sedimentary
chrysophyte cysts (Kamenik and Schmidt, 2005; Pla and Catalan, 2005), clacoceran
ephippia (Sarmaja-Korjonen, 2004), or diatom records from alpine lakes (Lotter and
Bigler, 2000) as they may have the potential for reflecting the length of the winter ice-
cover of the lakes, hence providing insights into the winter temperature changes during25

the event.
If the muted response to the 8200 cal yr BP event at the tree-line sites results from

the insensitivity of the palaeoclimatic records, then an important implication is that
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the northern tree-line regions, and in a more general sense, the cold regions of the
Earth, may not always be optimal targets for palaeoclimatic reconstruction. In these
regions the biological activity is to a great extent restricted to the short growing sea-
son during the summer months, whereas during the long and cold winter both terres-
trial and aquatic ecosystems are dormant and therefore less sensitive to temperature5

changes. Consequently, biological proxy techniques such as pollen and chironomid
records reflect predominantly summer temperatures in these regions. The same prox-
ies in regions with a longer biologically active period, such as the ecotone between
the temperate and boreal zones, are more sensitive to spring, autumn and perhaps
winter temperatures. The evidence associated with the 8200 cal yr BP event provides10

therefore a prime example of the importance of site selection in palaeoclimatological
and palaeoecological studies.
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Bjune, A. E., Birks, H. J. B., and Seppä, H.:. Holocene climate and vegetation history on a

continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofos-30

sils, Boreas, 33, 211–223, 2004.
Clark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W., Licciardi, J. M., and Teller, J.

T.: Freshwater forcing of abrupt climate change during the last glaciation, Science, 293,

180

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/165/2007/cpd-3-165-2007-print.pdf
http://www.clim-past-discuss.net/3/165/2007/cpd-3-165-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
3, 165–195, 2007

8200 events in
Northern Europe

H. Seppä et al.
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Table 1. Geographical locations and references of the pollen and oxygen-isotope records dis-
cussed in the study.

lat. long. calibration model reference

1 Rouge, Estonia 57◦44′ 26◦54′ Tann-3 Veski et al. (2004)
A Igelsjön, Sweden 58◦28′ 13◦44′ Hammarlund et al. (2003, 2005)
2 Trehörningen, Sweden 58◦33′ 11◦36′ Tann-3 Antonsson and Seppä (2007)
3 Flarken , Sweden 58◦33′ 13◦44′ Tann-3 Seppä et al. (2005)
4 Arapisto, Finland 60◦,35′ 24◦05′ Tann-2 Sarmaja-Korjonen and Seppä (2007)
5 Holtjärnen, Sweden 60◦39′ 15◦56′ Tann-3 this paper; Giesecke (2005)
6 Laihalampi, Finland 61◦29′ 26◦04′ Tann-1 Heikkilä and Seppä (2003)
7 Nautajärvi, Finland 61◦48′ 24◦41′ Tann-3 Ojala et al. (2007)1

8 Klotjärnen, Sweden 61◦49′ 16◦32′ Tann-3 this paper; Giesecke (2005)
B Tibetanus, Sweden 68◦20′ 18◦42′ Hammarlund et al. (2002)
9 Tsuolbmajavri, Finland 68◦41′ 22◦05′ Tjul Seppä and Birks (2001)
10 KP Lake, Russia 68◦48′ 35◦19′ Tjul this paper; Gervais et al. (2002)
11 Dalmutladdo, Norway 69◦10′ 20◦43′ Tjul Bjune et al. (2004)
12 Toskaljavri, Finland 69◦12′ 21◦28′ Tjul Seppä and Birks (2002)

1 Ojala, A. E. K., Alenius, T., and Seppä, H.: Integration of the clastic-organic varve record from Finland with a pollen-
based climate reconstruction for solving the Holocene seasonal temperature patterns in the high latitudes, submitted,
2007.
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Table 2. The performance statistics of the pollen-climate calibration models used for producing
the temperature records. RMSEP = root mean square error of prediction, R2 = coefficient of
determination between the observed temperature and that predicted by the model.

Model number of samples RMSEP R2 max. bias

Tjul 304 0.99◦C 0.71 3.94◦C
Tann-1 113 0.91◦C 0.85 2.12◦C
Tann-2 137 0.89◦C 0.88 2.13◦C
Tann-3 174 0.95◦C 0.88 2.10◦C
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H. Seppä et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

1

7

2 3

Southern arctic zone

Boreal zone

Temperate-Boreal zone

6

109
1211

4

5

8

B

A

Fig. 1. The locations of sites (1–12) from which pollen-based temperature reconstructions used
in this study have been obtained, together with sites (1, A, B) with oxygen-isotope records used
for comparison (Table 1). The approximate boundaries of the main biomes in the region are
shown. 1 = Lake Rouge, Estonia, 2 = Lake Trehörningen, Sweden, 3 = Lake Flarken, Sweden,
4 = Lake Arapisto, Finland, 5 = Lake Holtjärnen, Sweden, 6 = Lake Laihalampi, Finland, 7 =
Lake Nautajärvi, 8 = Lake Klotjärnen, Sweden, Finland, 9 = Lake Tsuolbmajavri, Finland, 10 =
Lake KP-2, Russia, 11 = Lake Dalmutladdo, Norway, 12 = Lake Toskaljavri, Finland, A = Lake
Igelsjön, Sweden, B = Lake Tibetanus, Sweden.
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Fig. 2. Corylus and Ulmus pollen percentage curves at 9500 to 7000 cal yr BP from four sites
in the southern and central parts of the study area. No records of these pollen types are shown
from the sites in the far north of Europe because these thermophilous taxa do not occur there.
See Fig. 1 for the locations of the sites.
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Fig. 3. Alnus pollen percentage curves at 9500 to 7000 cal yr BP from the eight sites in northern
Europe. Sites on the left, showing a decline of the Alnus values at about 8300–8100 cal yr BP,
are from the southern part of the study area, whereas sites of the right, with no clear decline of
Alnus, are from the North-European tree-line region. See Fig. 1 for the locations of the sites.
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Fig. 4. Pollen-based Tann and Tjul reconstructions at nine sites for the time period 9500 to 7000
cal yr BP arranged from the southernmost to the northernmost site. Original records are shown
on the left hand side. The panel on the right shows the residuals after detrending the records
with a third-order polynomial curve. See Fig. 1 for the locations of the sites.
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Fig. 5. Map showing the geographical pattern of the temperature change. The blue colour
indicates cooling and red colour warming during the 8200 cal yr BP event. The temperature
deviation at the event is calculated as the difference between the mean temperature at 8350–
8050 cal yr BP and the mean for the periods 8850–8350 and 8050–7550 cal yr BP.
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Fig. 6. Temperature deviation during the 8200 cal yr BP event along a south-to-north gradient.
Data from all 12 pollen-based records are included. The deviation is calculated by comparing
the reconstructed average July mean temperature or annual mean temperature at 8350–8050
cal yr BP relative to the mean temperature of the periods 8850–8350 cal yr BP and 8050–7550
cal yr BP.
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Fig. 7. Comparison of δ18O records obtained on fine-grained sedimentary calcite from small
lakes (0.5–4 ha) in the study area, Lakes Igelsjön (Hammarlund et al., 2003, 2005; Seppä et
al., 2005), Rouge (Veski et al., 2004), and Tibetanus (Hammarlund et al., 2002). See Fig. 1 for
the locations of the sites.
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